CALIPSO/CALIOP Cloud Phase Discrimination Algorithm
نویسندگان
چکیده
The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [CloudAerosol Lidar with Orthogonal Polarization (CALIOP)]. It assumes that backscattered light from ice crystals is depolarizing, whereas water clouds, being spherical, result in minimal depolarization. However, because of the relationship between the CALIOP field of view (FOV) and the large distance between the satellite and clouds and because of the frequent presence of oriented ice crystals, there is often a weak correlation between measured depolarization and phase, which thereby creates significant uncertainties in the current CALIOP phase retrieval. For water clouds, the CALIOP-measured depolarization can be large because of multiple scattering, whereas horizontally oriented ice particles depolarize only weakly and behave similarly to water clouds. Because of the nonunique depolarization–cloud phase relationship, more constraints are necessary to uniquely determine cloud phase. Based on theoretical and modeling studies, an improved cloud phase determination algorithmhas been developed. Instead of depending primarily on layer-integrated depolarization ratios, this algorithmdifferentiates cloud phases by using the spatial correlation of layer-integrated attenuated backscatter and layer-integrated particulate depolarization ratio. This approach includes a two-step process: 1) use of a simple two-dimensional threshold method to provide a preliminary identification of ice clouds containing randomly oriented particles, ice clouds with horizontally oriented particles, and possible water clouds and 2) application of a spatial coherence analysis technique to separate water clouds from ice clouds containing horizontally oriented ice particles. Other information, such as temperature, color ratio, and vertical variation of depolarization ratio, is also considered. The algorithmworks well for both the 0.38 and 38 offnadir lidar pointing geometry. When the lidar is pointed at 0.38 off nadir, half of the opaque ice clouds and about one-third of all ice clouds have a significant lidar backscatter contribution from specular reflections from horizontally oriented particles. At 38 off nadir, the lidar backscatter signals for roughly 30% of opaque ice clouds and 20% of all observed ice clouds are contaminated by horizontally oriented crystals. Corresponding author address: Yongxiang Hu, NASA Langley Research Center, MS 475, Hampton, VA 23681. E-mail: [email protected] NOVEMBER 2009 HU ET AL . 2293 DOI: 10.1175/2009JTECHA1280.1 ! 2009 American Meteorological Society
منابع مشابه
Status and performance of the CALIOP lidar
The Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) is the primary instrument on the CALIPSO satellite, which is scheduled to launch in 2005. CALIOP will provide profiles of total backscatter at two wavelengths, from which aerosol and cloud profiles will be derived. The instrument also measures the linear depolarization of the backscattered return, allowing discrimination of cloud pha...
متن کاملComparative Study on Cloud Parameter Estimation Among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI with Laser Radar: Lidar as Truth Data
A comparative study on cloud parameter estimation among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI is carried out using Laser Radar: Lidar as a truth data. Optical depth, size distribution, as well as cirrus type of clouds are cloud parameters. In particular, cirrus cloud detection is tough issue. 1.38 μm channel is required for its detection. Although MODIS and Landsat-8/OLI have such ...
متن کاملComparison of Two Different Cloud Climatologies Derived from CALIOP-Attenuated Backscattered Measurements (Level 1): The CALIPSO-ST and the CALIPSO-GOCCP
Two different cloud climatologies have been derived from the same NASA–Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)-measured attenuated backscattered profile (level 1, version 3 dataset). The first climatology, named Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations–Science Team (CALIPSO-ST), is based on the standard CALIOP cloud mask (level 2 product, version 3), ...
متن کاملLidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans
Cirrus cloud absorption optical depths retrieved at 12.05 μm are compared to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR) and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) flying on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pa...
متن کاملCharacterization of Polar Stratospheric Clouds with Space-Borne Lidar: CALIPSO and the 2006 Antarctic Season
Abstract. The role of polar stratospheric clouds in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously impossible. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, inc...
متن کامل